Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms

نویسندگان

  • Wei-Chiang Hong
  • Yucheng Dong
  • Li-Yueh Chen
  • Chien-Yuan Lai
چکیده

Keywords: Demand forecasting Genetic algorithm–simulated annealing (GA–SA) Support vector regression (SVR) Autoregressive integrated moving average (ARIMA) General regression neural networks (GRNN) Third generation (3G) mobile phone a b s t r a c t Taiwan is one of the countries with higher mobile phone penetration rate in the world, along with the increasing maturity of 3G relevant products, the establishments of base stations, and updating regulations of 3G mobile phones, 3G mobile phones are gradually replacing 2G phones as the mainstream product. Therefore, accurate 3G mobile phones demand forecasting is desirable and necessary to communications policy makers and all enterprises. Due to the complex market competitions and various subscribers' demands, 3G mobile phones demand forecasting reveals highly non-linear characteristics. Recently, support vector regression (SVR) has been successfully employed to solve non-linear regression and time-series problems. This investigation employs genetic algorithm–simulated annealing hybrid algorithm (GA–SA) to choose the suitable parameter combination for a SVR model. Subsequently, examples of 3G mobile phones demand data from Taiwan were used to illustrate the proposed SVRGA–SA model. The empirical results reveal that the proposed model outperforms the other two models, namely the autoregressive integrated moving average (ARIMA) model and the general regression neural networks (GRNN) model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm

Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely (i.e., trapping into a local optimum). However, the tendency of electric load sometimes reveals cyclic changes (such as hourly peak in a working day, weekly peak in a business week, and m...

متن کامل

Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting

Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the se...

متن کامل

Hybrid Chaotic Quantum Bat Algorithm with SVR in Electric Load Forecasting

Hybridizing evolutionary algorithms with a support vector regression (SVR) model to conduct the electric load forecasting has demonstrated the superiorities in forecasting accuracy improvements. The recently proposed bat algorithm (BA), compared with classical GA and PSO algorithm, has greater potential in forecasting accuracy improvements. However, the original BA still suffers from the embedd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010